1. Laplace equation

We call $\Delta u=0$ the Laplace equation, and we call its solution u a harmonic function. Given a smooth function $f(x)$, we call $\Delta u=f$ the Poisson's equation.

Let Ω denote a bounded open subset in \mathbb{R}^{2} with a smooth boundary curve $\partial \Omega$.

2. Harmonic function

Let us investigate several properties of harmonic functions.
Theorem 1 (Uniqueness). Given a smooth function $g: \partial \Omega \rightarrow \mathbb{R}$, there exists a unique smooth harmonic function $u: \Omega \rightarrow \mathbb{R}$ satisfying $u=g$ on $\partial \Omega$.

Proof. Suppose that we have two solutions u, v, and define $w=u-v$. Then, we have $\Delta w=0$ in Ω and $w=0$ on $\partial \Omega$. Thus,

$$
\int_{\Omega}|D w|^{2} d x=\int_{\partial \Omega} w \partial_{\nu} w d x-\int_{\Omega} w \Delta w d x=0
$$

Therefore, w is a constant, and thus $w=0$ by the boundary condition.
Theorem 2 (Mean value property). A harmonic function u satisfies

$$
u(0)=\frac{1}{\pi r^{2}} \int_{B_{r}(0)} u(x) d x=\frac{1}{2 \pi r} \int_{\partial B_{r}(0)} u(x) d s
$$

Proof. We begin by defining

$$
h(r)=\frac{1}{2 \pi r} \int_{\partial B_{r}(0)} u(x) d s
$$

for $r>0$. Then, we have

$$
h(r)=\frac{1}{2 \pi r} \int_{0}^{2 \pi} u(r \cos \theta, r \sin \theta) r d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(r \cos \theta, r \sin \theta) d \theta
$$

Hence,

$$
\begin{aligned}
h^{\prime}(r) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\langle\nabla u(r \cos \theta, r \sin \theta),(\cos \theta, \sin \theta)\rangle d \theta \\
& =\frac{1}{2 \pi} \int_{\partial B_{r}(0)}\langle\nabla u(r \cos \theta, r \sin \theta),(\cos \theta, \sin \theta)\rangle \frac{1}{r} d s \\
& =\frac{1}{2 \pi r} \int_{\partial B_{r}(0)} \partial_{\nu} u d s=\frac{1}{2 \pi r} \int_{B_{r}(0)} \Delta u d x=0 .
\end{aligned}
$$

Since $h(r)$ is a constant and $\lim _{r \rightarrow 0} u(0)$, we have $u(0)=h(r)$ the second formula. The first one can be obtained as follows.

$$
\frac{1}{\pi r^{2}} \int_{B_{r}(0)} u(x) d x=\frac{1}{\pi r^{2}} \int_{0}^{t} \int_{\partial B_{t}(0)} u(x) d s d t=\frac{1}{\pi r^{2}} \int_{0}^{r} 2 \pi t u(0) d t=u(0) .
$$

We call a function u subharmonic [resp.superharmonic] if it satisfies $\Delta u \geqslant 0$ [resp. $\Delta u \geqslant 0$].

Proposition 3. A subharmonic function satisfies

$$
\begin{aligned}
& u(0) \leqslant \frac{1}{\pi r^{2}} \int_{B_{r}(0)} u(x) d x \\
& u(0) \leqslant \frac{1}{2 \pi r} \int_{\partial B_{r}(0)} u(x) d s
\end{aligned}
$$

A superharmonic function satisfies

$$
\begin{aligned}
& u(0) \geqslant \frac{1}{\pi r^{2}} \int_{B_{r}(0)} u(x) d x \\
& u(0) \geqslant \frac{1}{2 \pi r} \int_{\partial B_{r}(0)} u(x) d s
\end{aligned}
$$

Proof. Remind that $\Delta u \geqslant 0$ implies $h^{\prime}(r) \geqslant 0$ in the proof of MVP. One can easily modify the proof above.

3. Maximum principle

We establish the maximum principle for a general class of linear elliptic PDEs. A simple proof of the maximum principle for harmonic functions is provided in the textbook chapter 3.3.

In this subsection, we consider $a_{i j}(x), b_{i}(x), c(x)$ are smooth functions defined on $\bar{\Omega}$ satisfying

$$
\begin{equation*}
a_{i j}(x) \xi_{i} \xi_{j} \geqslant \lambda|\xi|^{2} \tag{1}
\end{equation*}
$$

for some constant $\lambda>0$, where $\xi \in \mathbb{R}^{n}$. In addition, $a_{i j}(x)$ is a symmetric matrix at each x, namely $a_{i j}(x)=a_{j i}(x)$. We define a linear differential operator L by

$$
\begin{equation*}
L u=a_{i j} \partial_{i j} u+b_{i} \partial_{i} u+c u . \tag{2}
\end{equation*}
$$

We recall the eigenvalue decomposition from Linear algebra. For each x there exists real numbers $\lambda_{1}(x), \cdots, \lambda_{n}(x)$ and unit vectors $\vec{q}_{1}(x), \cdots, \vec{q}_{n}(x) \in \mathbb{R}$ such that $\lambda_{i} \geqslant \lambda,\left\langle\vec{q}_{i}, \vec{q}_{j}\right\rangle=0$ for $i \neq j$, and

$$
\begin{equation*}
a_{i j}=\sum_{k=1}^{n} \lambda_{k} q_{i}^{k} q_{j}^{k} \tag{3}
\end{equation*}
$$

where $\vec{q}_{k}=\left(q_{1}^{k}, \cdots, q_{n}^{k}\right)$.

Lemma 4. Suppose that $L u>0$ and $c(x) \leqslant 0$ hold in Ω. Then, the smooth subsolution u satisfies

$$
\max _{\bar{\Omega}} u \leqslant \max _{\partial \Omega} u_{+},
$$

where $u_{+}=\max \{0, u\}$.
Proof. Assume that u attains its maximum at an interior point $x_{0} \in \Omega$ and $u\left(x_{0}\right)>0$. Then, at x_{0} we have

$$
0<L u=a_{i j} u_{i j}+b_{i} u_{i}+c u \leqslant a_{i j} u_{i j},
$$

by $u_{i}\left(x_{0}\right)=0, c \leqslant 0$, and $u\left(x_{0}\right)>0$. In addition, by (3).

$$
0<a_{i j} u_{i j}=\sum_{i, j, k=1}^{n} \lambda_{k}\left(q_{i}^{k} q_{j}^{k} u_{i j}\right) .
$$

However, a function $h(t)=u\left(x_{0}+t \vec{q}_{k}\left(x_{0}\right)\right)$ attains its maximum at $t=0$. Hence

$$
\begin{equation*}
0 \geqslant h^{\prime \prime}(0)=q_{i}^{k} q_{j}^{k} u_{i j}\left(x_{0}\right), \tag{4}
\end{equation*}
$$

namely $0<a_{i j} u_{i j} \leqslant 0$. Contradiction.

Theorem 5 (Weak maximum principle). Suppose that $L u \geqslant 0$ and $c(x) \leqslant 0$ hold in Ω. Then, the smooth subsolution u satisfies

$$
\max _{\bar{\Omega}} u \leqslant \max _{\partial \Omega} u_{+},
$$

where $u_{+}=\max \{0, u\}$.
Proof. We define $w=u+\epsilon e^{-\alpha x_{1}}$ for $\epsilon>0$ and $\alpha \in \mathbb{R}$. Then,

$$
L w=L u+\epsilon L e^{-\alpha x_{1}} \geqslant \epsilon L e^{-\alpha x_{1}} .
$$

Moreover,

$$
L e^{-\alpha x_{1}}=e^{-\alpha x_{1}}\left[\alpha^{2} a_{11}+\alpha b_{1}+c\right] \geqslant e^{-\alpha x_{1}}\left[\lambda \alpha^{2}+\alpha b_{1}+c\right] .
$$

Since $\lambda>0$ and b_{i}, c are bounded, we can choose sufficiently large α depending on λ, b_{i}, c such that $L e^{-\alpha x_{1}}>0$. Then, we have $L w>0$. Thus, Lemma 4 yields

$$
\max _{\bar{\Omega}} u \leqslant \max _{\bar{\Omega}} w \leqslant \max _{\partial \Omega} w_{+} \leqslant \max _{\partial \Omega} u_{+}+\epsilon \max _{\partial \Omega} e^{-\alpha x_{1}} .
$$

Passing $\epsilon \rightarrow 0$ yields the desired result.

Lemma 6 (Hopf). Suppose that $L u \geqslant 0$ and $c(x) \leqslant 0$ hold in an open ball B. Moreover, there exists a boundary point $x_{0} \in \partial B$ satisfying $u\left(x_{0}\right) \geqslant 0$ and $u\left(x_{0}\right)>u(x)$ for $x \in B$. Then, the following holds

$$
\partial_{\nu} u\left(x_{0}\right)>0 .
$$

Proof. By translating the ball B, we may assume $x_{0} \in \partial B_{r}(0)$ and $B_{r}(0) \subset B$. Next, we define

$$
\Omega=B_{r}(0) \cap B_{r / 2}\left(x_{0}\right) .
$$

We consider a function $v=u+\epsilon h$, where $h(x)=e^{-\alpha|x|^{2}}-e^{-\alpha r^{2}}$. Then, in Ω

$$
\begin{aligned}
L h & =e^{-\alpha|x|^{2}}\left[4 \alpha^{2} a_{i j} x_{i} x_{j}-2 \alpha \sum_{i=1} \alpha_{i i}+2 b_{i} x_{i}+c\right]-c e^{-\alpha r^{2}} \\
& \geqslant e^{-\alpha|x|^{2}}\left[4 \alpha^{2} \lambda|x|^{2}-2 \alpha \sum_{i=1}^{n}\left(a_{i i}+\left|b_{i}\right||x|\right)+c\right] .
\end{aligned}
$$

Since $|x|^{2} \geqslant \frac{r^{2}}{4}$ and $|x| \leqslant r$ holds in Ω, we have $L h>0$ by choosing a sufficiently large α. Namely, we have $L v=L u+\epsilon L h>0$, and thus Lemma 4 yields

$$
\begin{equation*}
\max _{\bar{\Omega}} v \leqslant \max _{\partial \Omega} v_{+} . \tag{5}
\end{equation*}
$$

Now, we claim that there exists a small enough ϵ such that $v\left(x_{0}\right)=\max _{\partial \Omega} v_{+}$. First of all, on the portion $\partial B_{r}(0) \cap B_{r / 2}\left(x_{0}\right) \subset \partial \Omega$ we have $h=0$. Hence, $v_{+}=u_{+} \leqslant u\left(x_{0}\right)=v\left(x_{0}\right)$. Next, the other portion $B_{r}(0) \cap \partial B_{r / 2}\left(x_{0}\right) \subset \partial \Omega$ is a compact subset of the open set B, where $u(x)<u\left(x_{0}\right)$ holds. Hence, there exists a small $\delta>0$ such that $u(x) \leqslant u\left(x_{0}\right)-\delta$ holds on $B_{r}(0) \cap \partial B_{r / 2}\left(x_{0}\right)$. Since h is bounded over $\bar{\Omega}$, we can choose small enough ϵ such that $\epsilon h \leqslant \delta$. Then, $v=u+\epsilon h \leqslant u+\delta \leqslant$ $u\left(x_{0}\right)=v\left(x_{0}\right)$ holds on $B_{r}(0) \cap \partial B_{r / 2}\left(x_{0}\right)$.

In conclusion, we have $v\left(x_{0}\right)=\max _{\partial \Omega} v_{+}=\max _{\bar{\Omega}} v$. Thus,

$$
\begin{equation*}
\partial_{\nu} u\left(x_{0}\right)=\partial_{\nu} v\left(x_{0}\right)-\epsilon \partial_{\nu} h\left(x_{0}\right) \geqslant-\epsilon \partial_{\nu} h\left(x_{0}\right)>0 \tag{6}
\end{equation*}
$$

Theorem 7 (Strong maximum principle). Suppose that $L u \geqslant 0$ and $c(x) \leqslant 0$ hold in Ω. Then, the smooth subsolution u is a constant in $\bar{\Omega}$ or

$$
u(x)<\max _{\partial \Omega} u_{+}
$$

holds for $x \in \Omega$.

Proof. Assume that u attains its maximum at an interior point $x_{0} \in \Omega$ and $u\left(x_{0}\right)=M \geqslant 0$. We define a set $\Sigma=\{x \in \bar{\Omega}: u(x)=M\}$. Since u is a continuous function, Σ is a closed set. Towards contradiction, we assume Ω is not contained in Σ. Then, there exists a point $y_{0} \in \Omega \backslash \Sigma$ such that $d\left(y_{0}, \partial \Omega\right)>d\left(y_{0}, \Sigma\right)$, where $d\left(y_{0}, A\right)$ denotes the distance from y_{0} to the set A. There exists a small $r>0$ such that $B_{r}\left(y_{0}\right) \subset \Omega \backslash \Sigma$, because $\Omega \backslash \Sigma$ is an open set. Next, we define R by

$$
R=\sup \left\{r: B_{r}\left(y_{0}\right) \cap \Omega \backslash \Sigma\right\}
$$

Then, there exists a point $z_{0} \in \Sigma \cap \partial B_{R}\left(y_{0}\right)$ and $z_{0} \in \Omega$. Since $u\left(z_{0}\right)=\max u$ and $z_{0} \in \Omega$, we have $D u\left(z_{0}\right)=0$. However, by the Hopf's Lemma, we have $\partial_{\nu} u\left(z_{0}\right)>0$ where v is the outward pointing direction of $\partial B_{R}\left(y_{0}\right)$. Contradiction.

