1. LAPLACE EQUATION

We call $\Delta u = 0$ the Laplace equation, and we call its solution u a harmonic function. Given a smooth function f(x), we call $\Delta u = f$ the Poisson's equation.

Let Ω denote a bounded open subset in \mathbb{R}^2 with a smooth boundary curve $\partial \Omega$.

2. HARMONIC FUNCTION

Let us investigate several properties of harmonic functions.

Theorem 1 (Uniqueness). Given a smooth function $g : \partial \Omega \to \mathbb{R}$, there exists a unique smooth harmonic function $u : \Omega \to \mathbb{R}$ satisfying u = g on $\partial \Omega$.

Proof. Suppose that we have two solutions u, v, and define w = u - v. Then, we have $\Delta w = 0$ in Ω and w = 0 on $\partial \Omega$. Thus,

$$\int_{\Omega} |Dw|^2 dx = \int_{\partial \Omega} w \partial_{\nu} w dx - \int_{\Omega} w \Delta w dx = 0.$$

Therefore, w is a constant, and thus w = 0 by the boundary condition.

Theorem 2 (Mean value property). A harmonic function u satisfies

$$u(0) = \frac{1}{\pi r^2} \int_{B_r(0)} u(x) dx = \frac{1}{2\pi r} \int_{\partial B_r(0)} u(x) ds.$$

Proof. We begin by defining

$$h(r) = \frac{1}{2\pi r} \int_{\partial B_r(0)} u(x) ds$$

for r > 0. Then, we have

$$h(r) = \frac{1}{2\pi r} \int_0^{2\pi} u(r\cos\theta, r\sin\theta) r d\theta = \frac{1}{2\pi} \int_0^{2\pi} u(r\cos\theta, r\sin\theta) d\theta$$

Hence,

$$h'(r) = \frac{1}{2\pi} \int_0^{2\pi} \langle \nabla u(r\cos\theta, r\sin\theta), (\cos\theta, \sin\theta) \rangle d\theta$$

= $\frac{1}{2\pi} \int_{\partial B_r(0)} \langle \nabla u(r\cos\theta, r\sin\theta), (\cos\theta, \sin\theta) \rangle \frac{1}{r} ds$
= $\frac{1}{2\pi r} \int_{\partial B_r(0)} \partial_{\nu} u ds = \frac{1}{2\pi r} \int_{B_r(0)} \Delta u dx = 0.$

Since h(r) is a constant and $\lim_{r\to 0} u(0)$, we have u(0) = h(r) the second formula. The first one can be obtained as follows.

$$\frac{1}{\pi r^2} \int_{B_r(0)} u(x) dx = \frac{1}{\pi r^2} \int_0^t \int_{\partial B_t(0)} u(x) ds dt = \frac{1}{\pi r^2} \int_0^r 2\pi t \, u(0) dt = u(0).$$

We call a function *u* subharmonic [resp.superharmonic] if it satisfies $\Delta u \ge 0$ [resp. $\Delta u \ge 0$].

Proposition 3. A subharmonic function satisfies

$$u(0) \leq \frac{1}{\pi r^2} \int_{B_r(0)} u(x) dx,$$

$$u(0) \leq \frac{1}{2\pi r} \int_{\partial B_r(0)} u(x) ds.$$

A superharmonic function satisfies

$$u(0) \ge \frac{1}{\pi r^2} \int_{B_r(0)} u(x) dx,$$

$$u(0) \ge \frac{1}{2\pi r} \int_{\partial B_r(0)} u(x) ds.$$

Proof. Remind that $\Delta u \ge 0$ implies $h'(r) \ge 0$ in the proof of MVP. One can easily modify the proof above.

3. MAXIMUM PRINCIPLE

We establish the maximum principle for a general class of linear elliptic PDEs. A simple proof of the maximum principle for harmonic functions is provided in the textbook chapter 3.3.

In this subsection, we consider $a_{ij}(x)$, $b_i(x)$, c(x) are smooth functions defined on $\overline{\Omega}$ satisfying

$$a_{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2,\tag{1}$$

for some constant $\lambda > 0$, where $\xi \in \mathbb{R}^n$. In addition, $a_{ij}(x)$ is a symmetric matrix at each *x*, namely $a_{ij}(x) = a_{ji}(x)$. We define a linear differential operator *L* by

$$Lu = a_{ij}\partial_{ij}u + b_i\partial_i u + cu.$$
⁽²⁾

We recall the eigenvalue decomposition from Linear algebra. For each x there exists real numbers $\lambda_1(x), \dots, \lambda_n(x)$ and unit vectors $\vec{q}_1(x), \dots, \vec{q}_n(x) \in \mathbb{R}$ such that $\lambda_i \ge \lambda, \langle \vec{q}_i, \vec{q}_j \rangle = 0$ for $i \ne j$, and

$$a_{ij} = \sum_{k=1}^{n} \lambda_k q_i^k q_j^k,\tag{3}$$

where $\vec{q}_k = (q_1^k, \cdots, q_n^k)$.

Lemma 4. Suppose that Lu > 0 and $c(x) \le 0$ hold in Ω . Then, the smooth subsolution u satisfies

$$\max_{\overline{\Omega}} u \leq \max_{\partial \Omega} u_+,$$

where $u_{+} = \max\{0, u\}$.

Proof. Assume that *u* attains its maximum at an interior point $x_0 \in \Omega$ and $u(x_0) > 0$. Then, at x_0 we have

$$0 < Lu = a_{ij}u_{ij} + b_iu_i + cu \leqslant a_{ij}u_{ij},$$

by $u_i(x_0) = 0, c \le 0$, and $u(x_0) > 0$. In addition, by (3).

$$0 < a_{ij}u_{ij} = \sum_{i,j,k=1}^n \lambda_k (q_i^k q_j^k u_{ij}).$$

However, a function $h(t) = u(x_0 + t\vec{q}_k(x_0))$ attains its maximum at t = 0. Hence

$$0 \ge h''(0) = q_i^k q_j^k u_{ij}(x_0), \tag{4}$$

namely $0 < a_{ij}u_{ij} \leq 0$. Contradiction.

Theorem 5 (Weak maximum principle). Suppose that $Lu \ge 0$ and $c(x) \le 0$ hold in Ω . Then, the smooth subsolution u satisfies

$$\max_{\overline{\Omega}} u \leq \max_{\partial \Omega} u_+,$$

where $u_{+} = \max\{0, u\}$.

Proof. We define $w = u + \epsilon e^{-\alpha x_1}$ for $\epsilon > 0$ and $\alpha \in \mathbb{R}$. Then,

$$Lw = Lu + \epsilon Le^{-\alpha x_1} \ge \epsilon Le^{-\alpha x_1}$$

Moreover,

$$Le^{-\alpha x_1} = e^{-\alpha x_1} \left[\alpha^2 a_{11} + \alpha b_1 + c \right] \ge e^{-\alpha x_1} \left[\lambda \alpha^2 + \alpha b_1 + c \right]$$

Since $\lambda > 0$ and b_i, c are bounded, we can choose sufficiently large α depending on λ, b_i, c such that $Le^{-\alpha x_1} > 0$. Then, we have Lw > 0. Thus, Lemma 4 yields

$$\max_{\overline{\Omega}} u \leq \max_{\overline{\Omega}} w \leq \max_{\partial\Omega} w_+ \leq \max_{\partial\Omega} u_+ + \epsilon \max_{\partial\Omega} e^{-\alpha x_1}$$

Passing $\epsilon \rightarrow 0$ yields the desired result.

Lemma 6 (Hopf). Suppose that $Lu \ge 0$ and $c(x) \le 0$ hold in an open ball *B*. Moreover, there exists a boundary point $x_0 \in \partial B$ satisfying $u(x_0) \ge 0$ and $u(x_0) > u(x)$ for $x \in B$. Then, the following holds

$$\partial_{\nu}u(x_0) > 0$$

Proof. By translating the ball *B*, we may assume $x_0 \in \partial B_r(0)$ and $B_r(0) \subset B$. Next, we define

$$\Omega = B_r(0) \cap B_{r/2}(x_0).$$

We consider a function $v = u + \epsilon h$, where $h(x) = e^{-\alpha |x|^2} - e^{-\alpha r^2}$. Then, in Ω

$$Lh = e^{-\alpha |x|^2} \Big[4\alpha^2 a_{ij} x_i x_j - 2\alpha \sum_{i=1}^n \alpha_{ii} + 2b_i x_i + c \Big] - c e^{-\alpha r} \Big]$$

$$\geq e^{-\alpha |x|^2} \Big[4\alpha^2 \lambda |x|^2 - 2\alpha \sum_{i=1}^n \big(a_{ii} + |b_i| |x| \big) + c \Big].$$

Since $|x|^2 \ge \frac{r^2}{4}$ and $|x| \le r$ holds in Ω , we have Lh > 0 by choosing a sufficiently large α . Namely, we have $Lv = Lu + \epsilon Lh > 0$, and thus Lemma 4 yields

$$\max_{\overline{\Omega}} v \leq \max_{\partial \Omega} v_+.$$
(5)

Now, we claim that there exists a small enough ϵ such that $v(x_0) = \max_{\partial\Omega} v_+$. First of all, on the portion $\partial B_r(0) \cap B_{r/2}(x_0) \subset \partial\Omega$ we have h = 0. Hence, $v_+ = u_+ \leq u(x_0) = v(x_0)$. Next, the other portion $B_r(0) \cap \partial B_{r/2}(x_0) \subset \partial\Omega$ is a compact subset of the open set B, where $u(x) < u(x_0)$ holds. Hence, there exists a small $\delta > 0$ such that $u(x) \leq u(x_0) - \delta$ holds on $B_r(0) \cap \partial B_{r/2}(x_0)$. Since h is bounded over $\overline{\Omega}$, we can choose small enough ϵ such that $\epsilon h \leq \delta$. Then, $v = u + \epsilon h \leq u + \delta \leq u(x_0) = v(x_0)$ holds on $B_r(0) \cap \partial B_{r/2}(x_0)$.

In conclusion, we have $v(x_0) = \max_{\partial \Omega} v_+ = \max_{\overline{\Omega}} v$. Thus,

$$\partial_{\nu}u(x_0) = \partial_{\nu}v(x_0) - \epsilon \partial_{\nu}h(x_0) \ge -\epsilon \partial_{\nu}h(x_0) > 0.$$
(6)

Theorem 7 (Strong maximum principle). Suppose that $Lu \ge 0$ and $c(x) \le 0$ hold in Ω . Then, the smooth subsolution u is a constant in $\overline{\Omega}$ or

$$u(x) < \max_{\partial \Omega} u_+,$$

holds for $x \in \Omega$.

Proof. Assume that *u* attains its maximum at an interior point $x_0 \in \Omega$ and $u(x_0) = M \ge 0$. We define a set $\Sigma = \{x \in \overline{\Omega} : u(x) = M\}$. Since *u* is a continuous function, Σ is a closed set. Towards contradiction, we assume Ω is not contained in Σ . Then, there exists a point $y_0 \in \Omega \setminus \Sigma$ such that $d(y_0, \partial \Omega) > d(y_0, \Sigma)$, where $d(y_0, A)$ denotes the distance from y_0 to the set *A*. There exists a small r > 0 such that $B_r(y_0) \subset \Omega \setminus \Sigma$, because $\Omega \setminus \Sigma$ is an open set. Next, we define *R* by

$$R = \sup\{r : B_r(y_0) \cap \Omega \setminus \Sigma\}.$$

Then, there exists a point $z_0 \in \Sigma \cap \partial B_R(y_0)$ and $z_0 \in \Omega$. Since $u(z_0) = \max u$ and $z_0 \in \Omega$, we have $Du(z_0) = 0$. However, by the Hopf's Lemma, we have $\partial_v u(z_0) > 0$ where v is the outward pointing direction of $\partial B_R(y_0)$. Contradiction.